Analysis of β-globin Chromatin Micro-Environment Using a Novel 3C Variant, 4Cv
نویسندگان
چکیده
Higher order chromatin folding is critical to a number of developmental processes, including the regulation of gene expression. Recently developed biochemical techniques such as RNA TRAP and chromosome conformation capture (3C) have provided us with the tools to probe chromosomal structures. These techniques have been applied to the β-globin locus, revealing a complex pattern of interactions with regions along the chromosome that the gene resides on. However, biochemical and microscopy data on the nature of β-globin interactions with other chromosomes is contradictory. Therefore we developed a novel 4C variant, Complete-genome 3C by vectorette amplification (4Cv), which allows an unbiased and quantitative method to examine chromosomal structure. We have used 4Cv to study the microenvironment of the β-globin locus in mice and show that a significant proportion of the interactions of β-globin are inter-chromosomal. Furthermore, our data show that in the liver, where the gene is active, β-globin is more likely to interact with other chromosomes, compared to the brain where the gene is silent and is more likely to interact with other regions along the same chromosome. Our data suggest that transcriptional activation of the β-globin locus leads to a change in nuclear position relative to the chromosome territory.
منابع مشابه
5′HS5 of the Human β-globin Locus Control Region Is Dispensable for the Formation of the β-globin Active Chromatin Hub
Hypersensitive site 5 (5'HS5) of the beta-globin Locus Control Region functions as a developmental stage-specific border in erythroid cells. Here, we have analyzed the role of 5'HS5 in the three dimensional organization of the beta-gene locus using the Chromatin Conformation Capture (3C) technique. The results show that when 5'HS5 is deleted from the locus, both remote and internal regulatory e...
متن کاملCTCF-mediated transcriptional regulation through cell type-specific chromosome organization in the β-globin locus
The principles underlying the architectural landscape of chromatin beyond the nucleosome level in living cells remains largely unknown despite its potential to play a role in mammalian gene regulation. We investigated the three-dimensional folding of a 1 Mbp region of human chromosome 11 containing the β-globin genes by integrating looping interactions of the CCCTC-binding insulator protein CTC...
متن کاملReactivation of Developmentally Silenced Globin Genes by Forced Chromatin Looping
Distal enhancers commonly contact target promoters via chromatin looping. In erythroid cells, the locus control region (LCR) contacts β-type globin genes in a developmental stage-specific manner to stimulate transcription. Previously, we induced LCR-promoter looping by tethering the self-association domain (SA) of Ldb1 to the β-globin promoter via artificial zinc fingers. Here, we show that tar...
متن کاملChromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements.
Physical interactions between genetic elements located throughout the genome play important roles in gene regulation and can be identified with the Chromosome Conformation Capture (3C) methodology. 3C converts physical chromatin interactions into specific ligation products, which are quantified individually by PCR. Here we present a high-throughput 3C approach, 3C-Carbon Copy (5C), that employs...
متن کاملThe Chromatin “Landscape” of a Murine Adult β-Globin Gene Is Unaffected by Deletion of Either the Gene Promoter or a Downstream Enhancer
In mammals, the complex tissue- and developmental-specific expression of genes within the β-globin cluster is known to be subject to control by the gene promoters, by a locus control region (LCR) located upstream of the cluster, and by sequence elements located across the intergenic regions. Despite extensive investigation, however, the complement of sequences that is required for normal regula...
متن کامل